
Investigation of the percent contributions to 17a-methyltestosterone depletion in a lab-scale Salvinia-based reactor

Sudtida Pliankarom Thanasupsin* (M.Sc., M.Eng, Ph.D.)

Chemistry for Green Society and Healthy Living (ChGSH), Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), THAILAND

What is 17α -Methyltestosterone (MT)?

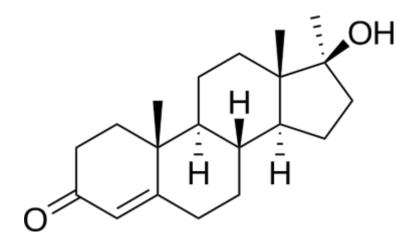


Figure 1. 17a-methyltestosterone $(C_{20}H_{30}O_2)$

Molecular Formula	C ₂₀ H ₃₀ O ₂
Molecular Weight	302.45
Color/Form	White crystal powder
Odor	Odorless
Melting Point	161–166°C
Solubilities	Methanol, ethanol, acetonitrile In water; 34 mg/L at 25°C
Stabilities	In low pH level
pKa/log K _{ow}	15.13/3.4

Table 1. Chemical and physical properties of 17a-methyltestosterone [1]

- Type: Anabolic steroid hormone
- Function: Hormonal growth promoter
- Close structural similarity to testosterone Tropical Engineering for Sustainable Well Being", 31st August 2020

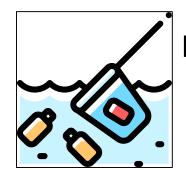
What are the applications of MT?

17 α - Methyltestosterone (MT)

- More muscles
- Stronger bones
- Improve mood
- Healthy heart and blood

- Reverse sex (all males)
- Increase production yield
- Fast growth rate
- Dosage: 60 mg 17MT/kg fish feed (Straus et al., 2013)
- Banned to used in sport activities
- Still used in fish aquaculture application

What are the effects of using MT?


Interfere endocrine systems

- Decreased testicular size
- Decrease sperm counts
- Increased aggressive behavior
- Breast enlargement (Combalbert et al., 2012)

Alter the endocrine in system of fish such as :

- Transcriptome (Gao et al., 2015)
- Gonadal gland
- Embryo development (Rivero-Wendt et al., 2016)

MT enter the aquatic environment via :

- Aquaculture discharge
- Domestic sewage
- Industrial discharge (Heidarimoghadam et al., 2016)

MT Levels of which caused effects

Table 2. MT levels in water of which caused effects on the tested animals

MT levels (µg/L)	Tested animals	Effects	Reference
0.1-1	Ramshorn snail	Affect the male sex organs	(Schulte-Oehlmann et al., 2004)
1.0	Gasterosteus aculeatus L.	Cause intersex in both male and female of three-spined stickleback	(Hahlbeck et al., 2004)
0.01-0.5	Zoarces viviparous	Decrease female characteristic in female eel spout for 10 days	(Korsgaard, 2006)
0.046	medaka fish	Decrease the fecundity and fertility	(Kang et al., 2008)
4	zebrafish	Inhibit vitellogenin (VTG) in zebrafish LC ₅₀ = 10.09 mg MT/L within 96h	(Rivero-Wendt et al.,2016)
0.25-5	Biomphalaria glabrata	Affect hatchling survival and growth rate of snail	(Kaur et al., 2016)

Water and Wastewater Treatment Technology for MT

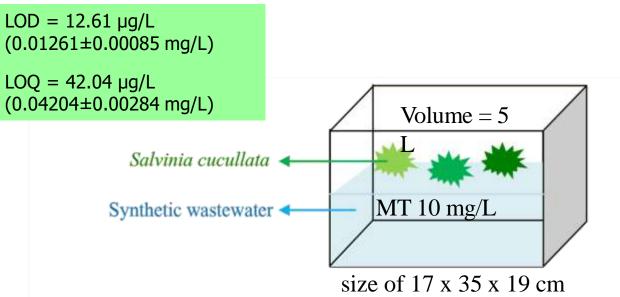
Technology	Pros	Cons
 biological treatment, conventional sewage treatment 	 Successfully remove soluble biodegradable organic contaminants from water 	 However, it cannot completely remove steroid hormones and MT
 Advanced treatment technology (i.e. Advanced Oxidation Process) 	 Successfully remove organic contaminants from water 	 However, metabolites or intermediate products from complex reactions can lead to other questions regarding their toxicity to the environment
 Natural biological treatment system incorporating aquatic plants 	 More effective and economical for the treatment of contaminated water with very low concentrations (parts per billion) of compounds such as surfactants, hormones, polar microcontaminants, and pharmaceutical compounds 	 However, performance in the removal of organic contaminants can be highly variable and is influenced by many factors, such as environmental factors and operational parameters. Little is known about the removal mechanisms involved

OBJECTIVES

- To the best of our knowledge, the potential use of *Salvinia* as a phytoremediator of MT has not been studied thus far.
- The results of our previous study showed that an active *Salvinia*-based reactor could be used for the removal of MT from contaminated water with a more than 90% removal efficiency.
- It was found that sorption was one of the key processes that accounted for the disappearance of MT from the water phase

(Adnan & Thanasupsin, 2016).

To search for a scientific explanation regarding the removal efficiency of MT in a lab-scale *Salvinia*-based reactor.


MATERIALS AND METHODS

Determination of MT by HPLC-UV

 The procedure for analyzing the water samples was modified from the protocol reported in (I. R. Barbosa et al., 2013),

HPLC conditions

- The column used for the chromatographic separation of MT was a carbon 18 reversed-phase (RP-C 18) column (ACE, 5 µm particle size, 250 x 4.6 mm).
- The injection of analytes was performed both automatically and manually manner at 25°C.
- The ratio and flow rate of the mobile phase used for MT detection (acetonitrile and DI water) were 70: 30, v/v and 1 mL/min

There are 50 g of Salvinia and 5 L of synthetic wastewater in the system

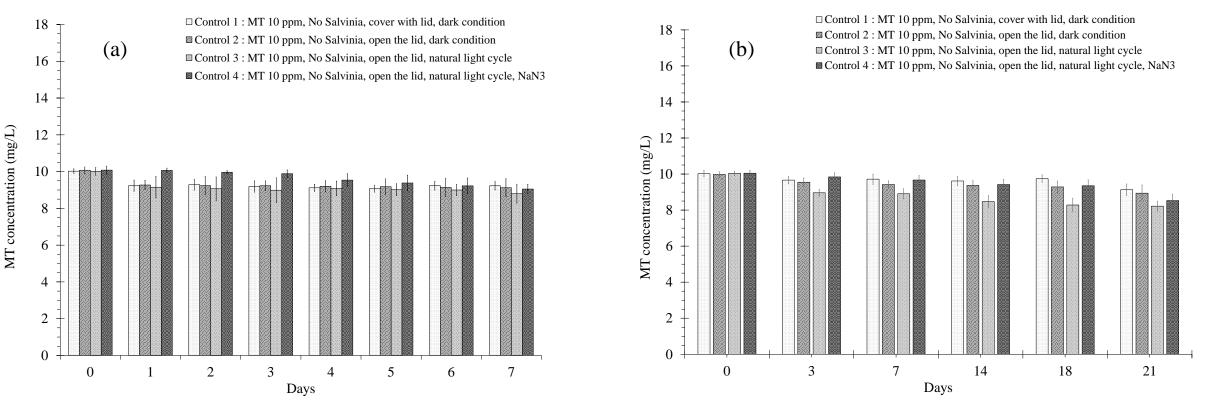
A composite sampling of 24 mL.

- Each sample was composed of samples collected from the top (8 mL), middle (8 mL), and bottom (8 mL) of the reactor.
- Water samples were collected in amber glass bottles and kept in the laboratory refrigerator

Table 2 Details of the experimental trials.

- Seven batch experiments, including 4 controls and 3 trials, were performed in this research.
- Each experimental trial was conducted in triplicate.

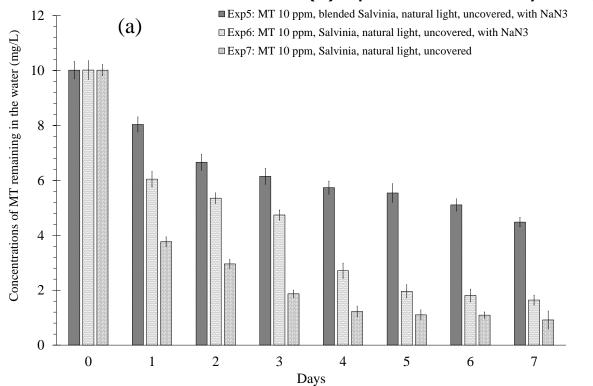
Conditions	Ref.	Control 1	Control 2	Control 3	Control 4	Exp.5	Exp.6	Exp.7
MT 10 mg/L	(Adnan & Thanasupsin, 2016)	/	/	/	/	/	/	/
Plant nutrients	(Shi et al., 2010)	/	/	/	/	/	/	/
NaN ₃ (1% w/w) ^a	-	/	/	-	/	/	/	-
Salvinia (50 g)	-	-	-	-	-	/ b	/	/
Top of the reactor covered	-	/	-	-	-	-	-	-
Natural light	-	_ C	_ C	/	/	/	/	/

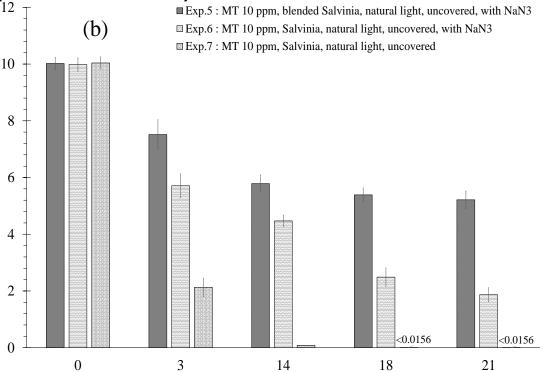

^a NaN₃ was used for microbial activity inhibition,

^b homogenized Salvinia

^c the sidewalls of the reactor were covered with foil, and the reactor was placed in a dark closed cabinet

RESULTS AND DISCUSSION 1. MT removal in the reactors


Figure 2 MT concentrations remaining in the reactors in each control experiment for; (a) a retention time of 7 days or (b) a retention time of 21 days.


The loss of MT in controls 1, 2 and 4 was related to physicochemical activities such as the attachment of MT to the glass, volatilization, and photodegradation, while microbial activity resulting from post-contamination from the air might have been the reason for the loss of MT (12.6%) observed in the control 4 reactor.

RESULTS AND DISCUSSION

Figure 3 MT concentrations remaining in the reactors in each experimental trial; (a) operated for 7 days or (b) operated for 21 days.

- The highest percentage of MT removal observed in the active Salvinia reactor (Exp.7) might have been affected by photodegradation, live plant activities, and microbial activities.
- In Exp.6, a slightly lower value than that in Exp.7 was probably caused by the inhibition of microbial activity.

- The disappearance of MT in Exp.5 was caused by plant-attached microbial communities and the sorption of MT onto Salvinia biomass.
- Increasing the retention time would improve the sorption and transformation of MT via the integrated activities of live plant and microbial communities.

Concentrations of MT remaining in the water (mg/L)

August 2020

RESULTS AND DISCUSSION

Table 3 & Table 4 show the MT degradation rates on day 7 and day 21 and half-lives in the reactors

Control/experimental trials	Degradation rate (k) at day-7, (day-1)	Degradation rate (k') at day-21, (day-1)	Half-life of MT, (day)
Control 1 - No Salvinia + covered top of the reactor + dark conditions	0.000	0.000	-
Control 2 - No Salvinia + dark conditions	0.000	0.000	-
Control 3 - No Salvinia + natural light	0.000	0.000	-
Control 4 - No Salvinia + natural light + NaN ₃	0.001	0.000	-
Exp.5 - Blended Salvinia + natural light + NaN_3	0.004	0.013	No microbial activity
Exp.6 - Salvinia + natural light + NaN ₃	0.010	0.060	No microbial activity
Exp.7 - Salvinia + natural light	0.014	0.442	1.57

- From Table 3, the biodegradation of MT did not occur within 7 days. ٠
- Increasing the retention time to 21 days would allow the biodegradation process to occur. ٠
- In this study, the biodegradation rate (0.442 day¹) at 21 day was higher than found by the previous research (Homklin ٠ et al., 2009).

Medium	Conditions	Half-life of E2	Half-life of E1	Half-life of EE2	Half-life of MT
Water	aerobic	0.2-1.7 dayª	0.2-1.7 day ^a	17 day	1.57 day (This study)

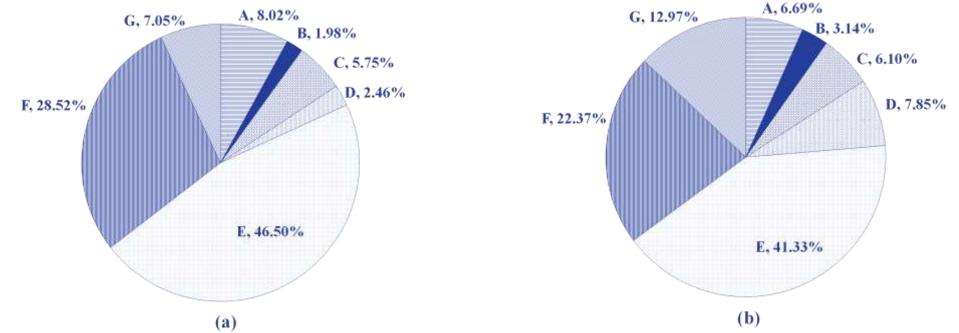

- The half-life of MT fell within the same range as those of E1 and E2. ٠
- This can be explained by the higher similarity of the structure and physicochemical properties of MT to E1 and E2 than ٠ to EE2.

Table 5 Contributions of MT depletion in the reactors at retention times of 7 and 21 days.

Contributions to MT removal from the water phase	Calculation of the MT mass	% contribution	% contribution
	fraction	Day-7	Day-21
(1) Sorption on glassware	$Mass_{initial MT} - Mass_{control 1}$	8.02±2.76	6.69±1.89
(2) Volatilization	Mass _{control 2} – Mass _{control 1}	1.98±1.97	3.14±1.78
(3) Photodegradation	Mass _{control 3} – Mass _{control 2}	5.75±1.86	6.10±1.36
(4) Microbial activity (both that originally in the water and post-contamination)	Mass _{control 4} – Mass _{control 3}	2.46±1.09	7.85±1.12
(5) Sorption on plant biomass and plant-attached microbial activity	$Mass_{control 4} - Mass_{Exp.6}$	46.50±3.80	41.33±2.73
(6) Intact live plant activity (i.e., plant uptake, sorption on live plant roots and attached microbial activity)	$Mass_{Exp.6} - Mass_{Exp.5}$	28.52±1.19	22.37±1.25
(7) Role of suspended microbial activity	$Mass_{Exp.7} - Mass_{Exp.6}$	7.05±3.60	12.97±2.84
Total	(1)+(2)+(3)+(4)+(5)+(6)+(7)	100.29±0.48	100.45±0.52

- The role of live plant (*Salvinia*) and overall microbial activities was determined by taking the mass of MT partitioned in the water between control 4 and Exp.7 into account. The contributions (%) on day 7 and day 21 were approximately 82.76% and 82.24%, respectively.
- The mass contribution was rechecked by the summation of the MT mass removed from (5) + (6) + (7).
- The result for the retention time after 7 days was 82.07%, which was very close to the experimental data (82.76%).
- Therefore, it can be concluded that the symbiotic action of microbial activities and Salvinia plays a key role in the depletion of MT in the active reactor.

Figure 4 Contribution fractions to MT depletion in the active Salvinia-based reactor; (a) retention times of 7 days and (b) 21 days.

A = Glassware, **B** = Volatilization, **C** = Photodegradation, **D** = Microbial activity (both that originally in the water and post-contamination),

 \mathbf{E} = Sorption on plant biomass and plant-attached microbial communities, \mathbf{F} = Intact live plant activity (i.e., plant uptake, sorption on live plant roots and attached microbial activity), \mathbf{G} = Role of suspended microbial activity

To determine the major contributions (%) to MT depletion, a target contribution percentage of 75% was established.

- For a retention time of 7 days, the major contributors were sorption on plant biomass and attached microbial activity (46.50%) and intact live plant activity (28.52%).
- For a retention time of 21 days, there were three major contributors: sorption on plant biomass and assigned microbial activity (41.33%), intact live plant activities (22.37%), and suspended microbial activity (12.97%).
- These findings indicated that an increasing retention time has a significant effect on the increase in suspended microbial activity.

CONCLUSION

- *Salvinia* can be used as a phytoremediator for the removal of MT from contaminated water.
- Active *Salvinia* reactors can effectively remove MT from aqueous mixtures.
- As a moderately hydrophobic organic contaminant, MT is likely to be taken up and translocated inside plant tissues.
- For a retention time of seven days, the top contributors to the depletion of MT in the active *Salvinia* reactor are sorption on plants and intact live plant activities
- while for a retention time of 21 days major contributors to the depletion of MT in the active *Salvinia* reactor are sorption on plant biomass and assigned microbial activity, intact live plant activities, and suspended microbial activity.
- Microbial activities in the reactor can be enhanced by increasing the retention time.
- Increasing the retention time to 21 days seems to allow sufficient time for the growth of aerobic microbial communities.
- The biodegradation rate and half-life values obtained in this study revealed that aerobic microbial communities are likely to be a key player in the biodegradation of MT in the active Salvia reactor.
- The symbiotic activity between intact live plant activities and microbial activities can enhance the biodegradation rate and shorten the half-life in the removal of MT.

Thank you for your kind attention